Academic Network of Albania Building a NREN

Dr. Eng. Arjan Xhelaj (ANA) Maurizzio Goretti (Namex)

Activities

- Software applications for Universities management "UGOV"
- Network infrastructure services for public/no public(NP)
 Universities & Research institutes

...at next

- Services e-libraries & e-publishing
- Service e-learning
- Cloud computing
- High Performance Computing
- Grid infrastructure
- Clusters
- IXP, etc

The objectives of Network Project

- Design the infrastructure of the new Albanian Academic Network Backbone
 - Physical infrastructure: passive and active
 - Fibers, radio, physical links
 - Routers, switches
 - Logical infrastructure and IP
 - Routing and switching
 - Possibility of using WDM
 - **▶** VoIP, NOC, SOC: service over the infrastructure
 - Integration with PSTN
 - VolP calls between universities
 - Network and Security Operations
- Support to ANA for the supervision of the network implementation
- Training to ANA staff and to Universities
 - Networks, routing, VoIP

The project is done in partnership with CINECA/CASPUR

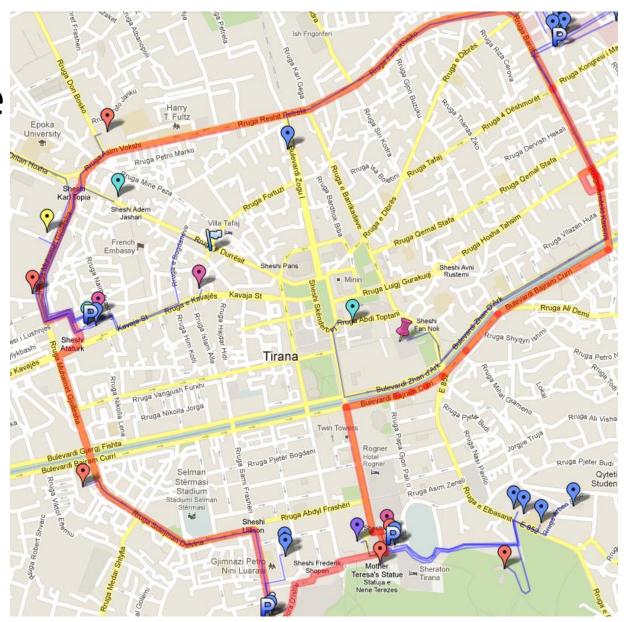
- Inter-University Consortium from Bologna/Roma
- They work on the common applications

NETWORK INFRASTRUCTURE

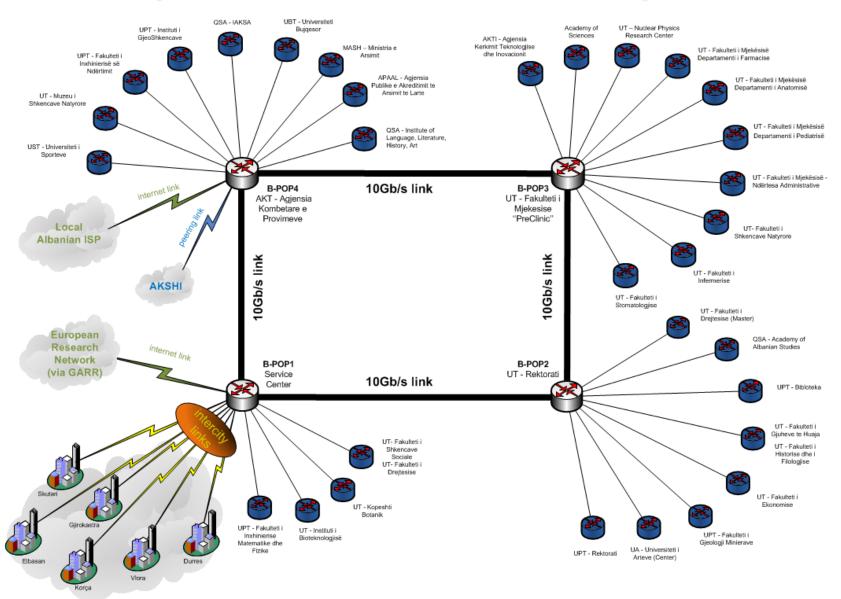
Designing the Network Backbone

- The network has to connect all public universities in 7 cities
 - In Tirana: 7 public universities, 3 research centers and the Ministry of Education
 - 6 universities outside Tirana
 - 4 affiliates
- The backbone will connect all the Universities together
- An essential :
 - design the network backbone, bringing one or more Points of Presence to each University
- The academic network will also be connected to
 - The European Research Network (Geant)
 - Passing through the Italian Research Network (GARR)
 - The Internet
 - Via GARR and/or via a local ISP

Survey Phase: Involving Stakeholders


- Detailed surveys from Caspur & ANA in all Universities and Research Centres
 - Tirana
 - Durrës
 - Elbasan
 - Korçë
 - Vlorë
 - Gjirokastër
 - Shkodër
- Surveyed all available infrastructure and asked about needs and special requests
 - Bandwidth
 - Communication with other universities
 - Servers
 - Applications

Actually situation


- Total Bandwidth currently available (download)
 - Around 200 Mbps (only for Universities)
- Number of servers
 - Around 60 (current or planned)
- Applications
 - Internal web/app servers (e.g. library)
 - Videoconferencing
 - 15 GRID servers (in a single site)
- People
 - Around 120,000 students + 7,000 staff
- Telephones
 - Around 350 outside phone lines (+ ~300 internal)

Physical Infrastructure

- MAN in Tirana
 - Ring
- 4 backbone PoPs
- Point-to-point links to buildings and universities in other cities

Physical Infrastructure Layout

Physical Infrastructure (1)

Design principles

- Geographic aggregation on two levels
 - Backbone aggregation PoP (BPoP, neighborhood area)
 - Edge aggregation PoP (buildings)
- Suitable bandwidth provisioning
 - Backbone PoPs links:

```
bandwidth ≥ 10 Gb/s
```

♣ Backbone PoPs to edge PoPs links:

```
bandwidth \geq 1 \text{ Gb/s}
```

♣ Edge PoPs to department CPEs links:

bandwidth ≤ 1 Gb/s

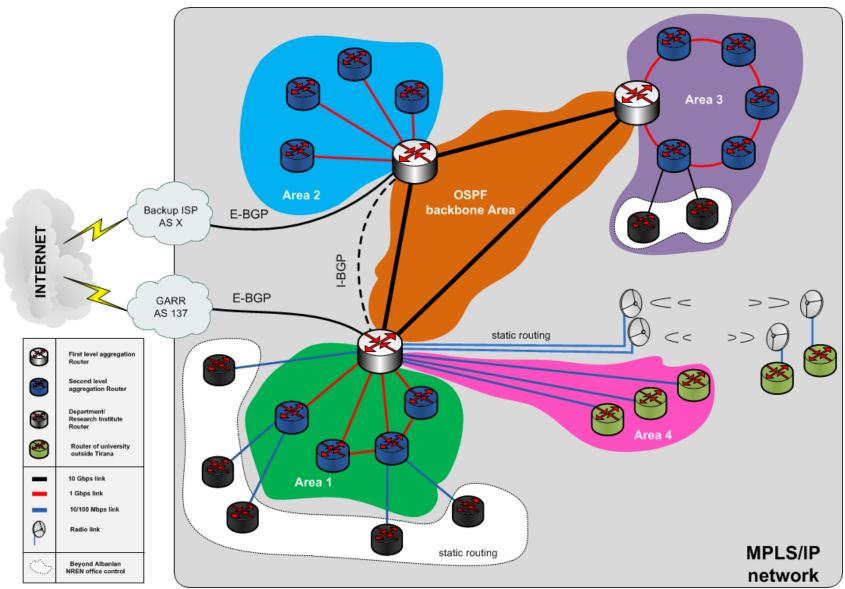
Physical Infrastructure (2)

Design principles

- "Super-BPoP" inside ANA premises
 - New Data Center containing common servers and applications
 - Centralize the inter-city links
 - Establish a connection to other research networks
- WDM technology has been evaluated for scalability
 - But it looks expensive and overkill for now
 - It can still be implemented in a subsequent phase

IP network

Design principles


- Dual-Stack IPv4/IPv6
 - on every network device
 - every department will be connected with one or both protocols
- IPv4 addressing
 - ANA is a LIR
 - Private addresses for point-to-point backbone links and management
 - Private subnets for department LANs (already existing)
 - Public IP addresses assigned to the departments
- IPv6 addressing: public addressing by default
 - Private IPv6 unique-local addresses will be used for management
- MPLS technology used for:
 - Routing optimization
 - ∧ L2 MPLS VPN deployment

IP network

Routing

- OSPF as Interior Gateway Protocol (IGP)
 - Between backbone aggregation PoPs (backbone area)
 - Between backbone and edge aggregation PoPs (edge areas)
 - Both inside and outside Tirana
- BGP as Exterior Gateway Protocol (EGP)
 - Two upstream providers
 - GARR (access to the European Research Network)
 - Local ISP (for local-bound traffic)
 - Partial BGP Mesh
 - To allow the distribution of BGP routes inside the AS

MPLS/IP network

Network: Main Issues

- Mostly cost issues (to be taken into account for the tender)
 - Overseas connectivity: point-to-point links between
 ANA (Albania) and GARR (Italy) are very expensive
 - Both submarine and via land
 - Inter-city connectivity: inter-city fiber is unprotected
 - Alternative: radio links
 - MAN in Tirana: new fiber can be laid or dark fiber can be obtained
 - Possibly not everything from the initial project can be put in the first tender

SERVICES

UGOV Albania

- U-GOV, is a integrated information system designed uniquely for Higher Education Institutions. It's aimed at defining objectives, strategies and means for achieving and monitoring results.
- U-GOV combines applications for the management of the main administration areas of Universities in a single systemic vision:

Personnel, accounting, research, learning and student services coexist in a unique and integrated architectural environment, together with decision support tools.

UGOV Albania (2)

VoIP

Ideal requirements

- Seamless integration with the PSTN
 - No disruption with the current telephone system
 - Every new "phone terminal" (POTS phone, IP phone, SIP client on PC) has to be reachable by every other terminal
- Use of standards
 - Proprietary systems are very expensive, hard to replace and do not interact with other systems
- Ease of use for the final user
 - Users should be able to continue using the old system if they want
 - No user training should be necessary
- Reliability
- Savings
 - Calls between universities should be "free" (i.e. go through the IP network)

VoIP (2)

Problems:

there is a very heterogeneous telephone environment

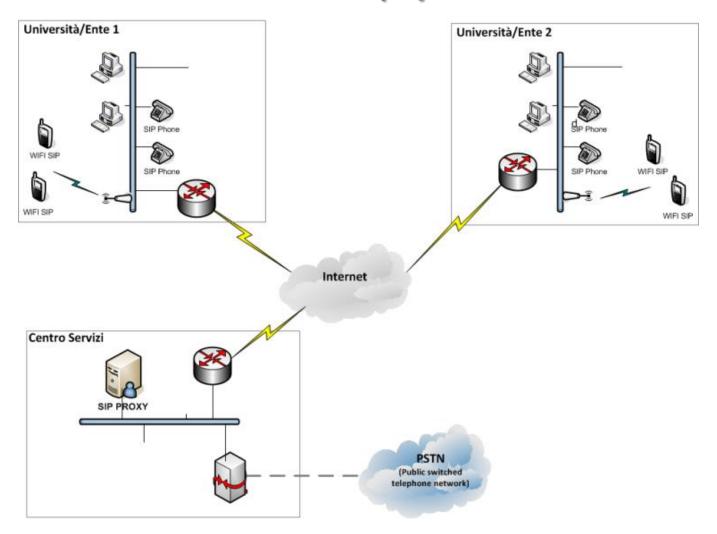
- In many universities there is no telephone switch
- Most only have a few independent lines
- Some have a switch with internal phones that can't call outside
- To design a VoIP system for each University/Faculty/Building would be
- Complex
- Expensive
- Tortuous to implement

VoIP (3)

Proposed solution

Centralized system, in addition to the current setup

- The Universities will still keep their current system
- Some preconfigured VoIP phones could be given out to Universities
- The VoIP phones can be seen as new, separate lines


Advantages for Universities

- Calls to other Albanian universities would be free
- Calls to European Universities of countries adopting NRENUM would be free
- Bulk phone traffic agreements could be set up for cheaper fees

Advantages for ANA

- Centralized service, recognized importance
- Revenues

VoIP (4)

NOC/SOC

Core management services

Monitoring services

The project has include

- Organizational structure
- Procedures
 - How to set up a connection to ANA
 - How to request services
 - Interfacing between ANA and local sites
 - Guidelines for Maintenance and Security
 - Requests for Support
 - Incident Handling
- Trouble Ticketing System
- Monitoring software
 - Statistics
 - Troubleshooting
 - Diagnostic Tools

Thank You

Contact:

Dr.-Eng. Arjan Xhelaj

Interuniversity Center

Academic Network of Albania

E-mail: arjanxhelaj@rash.al

Web: www.rash.al